Using bisection method, find the root of the equation f(x)=x2 -6logx-3=0(2<=x<=3)'correct to 4 decimal places with an accuracy of 10 -2 .
Here,  f(x)=x2 -6 logx-3=0
f(2)=4-6 log2-3=-0.806
f(3)=9-6 log3-3=3.1373
f(2).f(3)=-0.806*3.1373=-2.529422 which is negative.
Hence, the root lies between 2 and 3
c0 =(2+3)/2=2.5
f(2.5)=6.25-6 log 2.5-3=0.8623
Now
  n   |  a(-ve)   |  b(+ve)   |  cn   |  f(cn)   |  
  0   |  2   |  3   |  2.5   |  0.8623   |  
  1   |  2   |  2.5   |  2.25   |  -0.050595   |  
  2   |  2.25   |  2.5   |  2.375   |  0.38664   |  
  3   |  2.25   |  2.375   |  2.3125   |  0.1631658   |  
  4   |  2.25   |  2.3125   |  2.28125   |  0.05506   |  
  5   |  2.25   |  2.28125   |  2.265625   |  0.001925   |  
 
From the table,
f(2.265625)=0.001928<10-2 
...