Using bisection method, find the root of the equation f(x)=x2 -6logx-3=0(2<=x<=3)'correct to 4 decimal places with an accuracy of 10 -2 .
Here, f(x)=x2 -6 logx-3=0
f(2)=4-6 log2-3=-0.806
f(3)=9-6 log3-3=3.1373
f(2).f(3)=-0.806*3.1373=-2.529422 which is negative.
Hence, the root lies between 2 and 3
c0 =(2+3)/2=2.5
f(2.5)=6.25-6 log 2.5-3=0.8623
Now
| n |  a(-ve) |  b(+ve) |  cn |  f(cn) |  
| 0 |  2 |  3 |  2.5 |  0.8623 |  
| 1 |  2 |  2.5 |  2.25 |  -0.050595 |  
| 2 |  2.25 |  2.5 |  2.375 |  0.38664 |  
| 3 |  2.25 |  2.375 |  2.3125 |  0.1631658 |  
| 4 |  2.25 |  2.3125 |  2.28125 |  0.05506 |  
| 5 |  2.25 |  2.28125 |  2.265625 |  0.001925 |  
From the table,
f(2.265625)=0.001928<10-2
...