or

23 Maths -- Sequence and Series

The A.M., G.M. and H.M. between any two unequal positive numbers satisfy the relations (a) (G.M.)2  = (A.M.) x (G.M.)             (b) A.M. > G.M. > H.M.

The A.M., G.M. and H.M. between any two unequal positive numbers satisfy the relations
(a) (G.M.)2  = (A.M.) x 
(G.M.)             (b) A.M. > G.M. > H.M.

Let a and b be two unequal positive numbers. Then,

A.M. = (a+b)/2                        G.M = (ab)

     and, H.M. = 2ab/(a+b)     
To
Prove the first part, we have

(A.M.) x (G.M.) = (a+b)/2 x 2ab/(a+b) 

                            = ab
                            = (
ab)2  

 To prove the second part, let us consider that

   A.M. – G.M. = (a+b)/2 -  (ab)

                          = {(a + b - 2(ab)}/2 

                             = 1/2 (a - b)2 

 which is always positive as square of any number either positive or negative always yield positive number

Hence, A.M.  > G.M.
Again,
            (A.M.) x 
(H.M.) = (G.M.) x (G.M.)
or,           
  (A.M.)/ (G.M.) = (G.M.)/(H.M.) 

Since, A.M > G.M.
we have G.M. > H.M.
Combining the two, We have
 A.M. > G.M. > H.M.

Close Open App