Here, f: A—>B
f(x)= (x-1)/(x+2) ; x ≠ -2
A= {-1,0,1,2,3,4}
B= {-2,1,-1/2,0,1/2,1/4,2/5}
Range = {-2,-1/2,0,1/4,1/2,2/5}
As range is not equal to codomain so the given function is not bijective.
We can make it bijective by omitting {1} from set B
Log2aa=x then, a=(2a)x......(1)
Log3a2a=y then,2a=(3a)y......(2)
Log4a3a=z then, 3a=(4a)z......(3)
So,
a=(2a)x [from (1)]
Or, a=(3a)xy [from(2)]
Or, a=(4a)xyz [from(3)]
Multiplying both sides by 4a,
4a.a=4a.(4a)xyz
Or,(2a)² =(4a)xyz + 1
Or,(3a)2y=(4a)xyz+1
Or,(4a)2yz=(4a)xyz+1
Or, 2yz = xyz+1 .proved.