If a4+b4+c4 = 2c2(a2+b2), prove that C = 45o or 135o.
a4 + b4 +c4 = 2c2 (a2+b2)
or, (a2+b2)2 - 2a2b2 + c4 = 2(a2+b2)c2 [a2+ b2 = (a+b)2 - 2ab]
or, (a2+b2)2 - 2(a2+b2)c2 + (c2)2 = 2a2b2
or, (a2+ b2 - c2)2 = 2a2b2
or, a2+ b2 - c2= 2 ab
...
If 8R² = a² + b² + c², prove that the triangle is right angled.
a2+b2+c2=8R2sin2A+sin2B+sin2C=23−(cos2A+cos2B+cos2C)=4cos2A+cos2B+cos2C=−1−1−4cosAcosBcosC=−1cosAcosBcosC=0⟹cosA=0 or cosB=0 or cosC=0 ⟹A=90∘ or B=90∘ or C=90∘⟹ the triangle is right angled